
DESIGN OF PILE FOUNDATIONS IN LIQUEFIABLE SOILS

Gopal Madabhushi • Jonathan Knappett • Stuart Haigh Imperial College Press

Contents

Foreword

Preface

1.	Perf	ormance	e of Pile Foundations	1		
	1.1		uction	1		
		1.1.1	Axial capacity of a single pile	3		
		1.1.2	Pile capacity based on CPT testing	5		
			1.1.2.1 Pile base capacity	6		
			1.1.2.2 Shaft friction	7		
	1.2	.2 Performance of Pile Foundations During Earthquake Loading				
	1.3	Soil Liquefaction and Lateral Spreading				
	1.4	.4 Performance of Pile Foundations in Past Earthquakes				
		1.4.1	Showa bridge failure	14		
		1.4.2	Niigata Family Court House building	18		
		1.4.3	The Landing Bridge performance	21		
		1.4.4	The Harbour Master's Tower at Kandla Port	27		
	1.5	1.5 Modes of Pile Failure in Liquefiable Soils				
		1.5.1	Failure mechanisms for single piles	31		
		1.5.2	Failure mechanisms for pile groups	35		
	1.6	5 Summary				
2.	Iner	tial and	Kinematic Loading	39		
	2.1	Pile B	ehaviour Under Earthquake Loading	39		
		2.1.1	Inertial loading	39		
		2.1.2	Kinematic loading in level ground	41		
		2.1.3	Kinematic loading in sloping ground	43		
	2.2	Analy	sis of Laterally Loaded Piles Under Static Conditions	43		
		2.2.1	Simplified soil profiles	44		
		2.2.2	Simplified analysis procedures for piles under static loading	46		

	r	1	1
- 4	۰.	л	л

		2.3.1 Variation in the action of inertial and kinematic loads with depth	48	
		2.3.2 Effective lengths of piles	49	
		2.3.3 Pile flexibility	50	
	2.4	Kinematic Response in Level Ground	51	
	2.5	Kinematic Loading in Laterally Spreading Soil		
	2.6	Inertial Response	56	
		2.6.1 Relative stiffness of pile-soil system	56	
		2.6.2 Damping coefficients	57	
	2.7	<i>p-y</i> Analysis of Piles	58	
		2.7.1 Static lateral loading	58	
		2.7.2 Cyclic lateral loading	62	
		2.7.3 <i>p-y</i> analysis under earthquake loading – level ground	63	
		2.7.4 <i>p-y</i> analysis under earthquake loading – sloping ground	64	
	2.8	Limit Equilibrium Analysis of Piles Subjected to Earthquake Loading	67	
		2.8.1 Limit equilibrium of piles in laterally spreading soils	68	
		2.8.2 Limit equilibrium analysis in the presence of nonliquefied crust	70	
		2.8.2.1 Stiff clay as a nonliquefiable layer	70	
		2.8.2.2 Dense sand as a nonliquefiable layer	74	
	2.9	Provisions in Eurocode 8	76	
		2.9.1 Combination rules	77	
		2.9.2 Pile head fixity coefficients	77	
		2.9.3 Kinematic loading	78	
	2.10	Summary	79	
3.	Acco	unting for Axial Loading in Level Ground	80	
	3.1	Liquefaction as a Foundation Hazard	80	
		3.1.1 Liquefaction	80	
		3.1.2 Determination of liquefaction susceptibility	82	
	3.2	Influence of Axial Loading on Pile Failure	84	
	3.3	Axial Load Transfer Due to Liquefaction	85	
		3.3.1 Liquefaction-induced (co-seismic)	85	
		3.3.2 Downdrag (post-earthquake)	88	
	3.4	Pile Settlement	88	
		3.4.1 Liquefaction-induced (co-seismic)	88	
		3.4.2 Downdrag (post-earthquake)	92	
	3.5	Guidelines for Designing Against Bearing Failure	95	
	3.6			
		3.6.1 Rock-socketed piles	98 98	
			105	
	3.7		108	
			108	
			110	

Contents

		3.7.3	Offiniate axial minting states for pred realizations	111
		3.7.4	Use of limiting states in pile sizing	
	3.8	Summ	ary	115
4.	Later	al Spre	ading of Sloping Ground	116
	4.1		faction-induced Lateral Spreading	116
			Introduction	116
	4.2	Simpl	e Methods to Estimate the Extent of Lateral Spreading	120
	4.3	Effect	s of Lateral Spreading on Pile Foundations	124
		4.3.1	Presence of nonliquefiable crust	125
		4.3.2	Lateral pressures generated on piles and pile caps	126
		4.3.3		134
			4.3.3.1 Specifications for Highway Bridges (JRA, 2002)	134
			4.3.3.2 Design Standard for Railway Facilities (RTRI 1999)	134
			4.3.3.3 Recommendations for Design of Building	
			I oundurions (The Boot) minimum	
			Recent experimental data vs codal provisions	
	4.4	Recon	mmendations on Estimation of Lateral Loads for Pile Design	136
5.	. Axia	al Load	ing on Piles in Laterally Spreading Ground	138
	5.1	Introd	duction	138
	5.2	Phasi	ng of Loads	138
		5.2.1	Inertial and kinematic loads	
		5.2.2		
	5.3	Peak	Lateral Response of Piled Foundations	143
	5.4	Resid	lual Lateral Response of Piled Foundations	147
		5.4.1		
		5.4.2		
		5.4.3		154
		5.4.4		155
	5.5	Valid	lation of Effects of Axial Pile Load	157
	5.6		mmendations for Designing Piles in Laterally Spreading Ground	
6	Des	ion Ev	amples	165
0	6.1	Intro	duction	165
	6.2		gn of Piles Under Static Loading	
	0.2	6.2.1		
		0.2.1	6.2.1.1 End bearing	. 166
			6.2.1.2 Shaft resistance	
		6.2.2		
		0.2.2	6.2.2.1 End bearing	. 168
			6.2.2.2 Shaft resistance	

xiii

Design of Pile Foundations in Liquefiable Soils

6.3	Inertia	al and Kinematic Loading on Piles in Level Ground	171
	6.3.1	Example 3: Soil stiffness and natural frequency	172
	6.3.2	Example 4: Effective length and flexibility of the pile	175
		6.3.2.1 Effective length of the pile	175
		6.3.2.2 Flexibility of the pile	176
	6.3.3	Example 5: Inertial loading on the pile	177
	6.3.4	Example 6: Kinematic interaction	180
6.4	Desig	n of Piles in Level Liquefiable Ground	182
	6.4.1	Example 7: Determination of liquefaction potential from	
		CPT data	182
	6.4.2	Example 8: Pile sizing based on liquefaction considerations	187
	6.4.3	Example 9: Inertial response in level liquefied ground	191
6.5	Desig	n of Piles in Sloping Liquefiable Ground	192
	6.5.1	Example 10: Pile group in two-layer soil profile subject to	
		lateral spreading	192
		6.5.1.1 Method 1	196
		6.5.1.2 Method 2	196
		6.5.1.3 Method 3	196
	6.5.2	Example 11: Pile group in three-layer soil profile subject to	
		lateral spreading	199
6.6	Summ	nary of Inclusive Design Procedure	200
eferen	ices		203

References

Index

211

xiv